Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 96(17): e0096722, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1986331

RESUMEN

Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1+S100A9+CD206+) M2-like macrophages and N2-like neutrophils in lungs and livers. DCLK1 and S100A9 expression were rarely observed in normal controls, COVID-19-negative subjects with chronic lung disease, or COVID-19 subjects without chronic liver disease. In hospitalized patients with COVID-19, we detected 2 to 3-fold increased levels of circulating DCLK1+S100A9+ mononuclear cells that correlated with disease severity. We validated the SARS-CoV-2-dependent generation of these double-positive immune cells in coculture. SARS-CoV-2-induced DCLK1 expression correlated with the activation of ß-catenin, a known regulator of the DCLK1 promoter. Gain and loss of function studies showed that DCLK1 kinase amplified live virus production and promoted cytokine, chemokine, and growth factor secretion by peripheral blood mononuclear cells. Inhibition of DCLK1 kinase blocked pro-inflammatory caspase-1/interleukin-1ß signaling in infected cells. Treatment of SARS-CoV-2-infected cells with inhibitors of DCLK1 kinase and S100A9 normalized cytokine/chemokine profiles and attenuated DCLK1 expression and ß-catenin activation. In conclusion, we report previously unidentified roles of DCLK1 in augmenting SARS-CoV-2 viremia, inflammatory cytokine expression, and dysregulation of immune cells involved in innate immunity. DCLK1 could be a potential therapeutic target for COVID-19, especially in patients with underlying comorbid diseases associated with DCLK1 expression. IMPORTANCE High mortality in COVID-19 is associated with underlying comorbidities such as chronic liver diseases. Successful treatment of severe/critical COVID-19 remains challenging. Herein, we report a targetable host factor, DCLK1, that amplifies SARS-CoV-2 production, cytokine secretion, and inflammatory pathways via activation of ß-catenin(p65)/DCLK1/S100A9/NF-κB signaling. Furthermore, we observed in the lung, liver, and blood an increased prevalence of immune cells coexpressing DCLK1 and S100A9, a myeloid-derived proinflammatory protein. These cells were associated with increased disease severity in COVID-19 patients. Finally, we used a novel small-molecule inhibitor of DCLK1 kinase (DCLK1-IN-1) and S100A9 inhibitor (tasquinimod) to decrease virus production in vitro and normalize hyperinflammatory responses known to contribute to disease severity in COVID-19.


Asunto(s)
COVID-19 , Quinasas Similares a Doblecortina , COVID-19/metabolismo , COVID-19/patología , Calgranulina B/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Quinasas Similares a Doblecortina/antagonistas & inhibidores , Quinasas Similares a Doblecortina/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Leucocitos Mononucleares/metabolismo , Quinolonas/farmacología , SARS-CoV-2 , beta Catenina/metabolismo
2.
Gene ; 840: 146772, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1983092

RESUMEN

The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias/genética
3.
EMBO Mol Med ; 14(8): e15888, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1918174

RESUMEN

Durable cell-mediated immune responses require efficient innate immune signaling and the release of pro-inflammatory cytokines. How precisely mRNA vaccines trigger innate immune cells for shaping antigen specific adaptive immunity remains unknown. Here, we show that SARS-CoV-2 mRNA vaccination primes human monocyte-derived macrophages for activation of the NLRP3 inflammasome. Spike protein exposed macrophages undergo NLRP3-driven pyroptotic cell death and subsequently secrete mature interleukin-1ß. These effects depend on activation of spleen tyrosine kinase (SYK) coupled to C-type lectin receptors. Using autologous cocultures, we show that SYK and NLRP3 orchestrate macrophage-driven activation of effector memory T cells. Furthermore, vaccination-induced macrophage priming can be enhanced with repetitive antigen exposure providing a rationale for prime-boost concepts to augment innate immune signaling in SARS-CoV-2 vaccination. Collectively, these findings identify SYK as a regulatory node capable of differentiating between primed and unprimed macrophages, which modulate spike protein-specific T cell responses.


Asunto(s)
COVID-19 , Proteína con Dominio Pirina 3 de la Familia NLR , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Innata , Inflamasomas/metabolismo , Interleucina-1beta , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Tirosina Quinasas/metabolismo , ARN Mensajero/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Quinasa Syk , Vacunación
4.
FASEB J ; 36(3): e22234, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1702985

RESUMEN

The transmembrane protease angiotensin converting enzyme 2 (ACE2) is a protective regulator within the renin angiotensin system and additionally represents the cellular receptor for SARS-CoV. The release of soluble ACE2 (sACE2) from the cell surface is hence believed to be a crucial part of its (patho)physiological functions, as both, ACE2 protease activity and SARS-CoV binding ability, are transferred from the cell membrane to body fluids. Yet, the molecular sources of sACE2 are still not completely investigated. In this study, we show different sources and prerequisites for the release of sACE2 from the cell membrane. By using inhibitors as well as CRISPR/Cas9-derived cells, we demonstrated that, in addition to the metalloprotease ADAM17, also ADAM10 is an important novel shedding protease of ACE2. Moreover, we observed that ACE2 can also be released in extracellular vesicles. The degree of either ADAM10- or ADAM17-mediated ACE2 shedding is dependent on stimulatory conditions and on the expression level of the pro-inflammatory ADAM17 regulator iRhom2. Finally, by using structural analysis and in vitro verification, we determined for the first time that the susceptibility to ADAM10- and ADAM17-mediated shedding is mediated by the collectrin-like part of ACE2. Overall, our findings give novel insights into sACE2 release by several independent molecular mechanisms.


Asunto(s)
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteína ADAM10/genética , Proteína ADAM17/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Enzima Convertidora de Angiotensina 2/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Vesículas Extracelulares/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2
5.
Nat Neurosci ; 24(11): 1522-1533, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1500484

RESUMEN

Coronavirus disease 2019 (COVID-19) can damage cerebral small vessels and cause neurological symptoms. Here we describe structural changes in cerebral small vessels of patients with COVID-19 and elucidate potential mechanisms underlying the vascular pathology. In brains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals and animal models, we found an increased number of empty basement membrane tubes, so-called string vessels representing remnants of lost capillaries. We obtained evidence that brain endothelial cells are infected and that the main protease of SARS-CoV-2 (Mpro) cleaves NEMO, the essential modulator of nuclear factor-κB. By ablating NEMO, Mpro induces the death of human brain endothelial cells and the occurrence of string vessels in mice. Deletion of receptor-interacting protein kinase (RIPK) 3, a mediator of regulated cell death, blocks the vessel rarefaction and disruption of the blood-brain barrier due to NEMO ablation. Importantly, a pharmacological inhibitor of RIPK signaling prevented the Mpro-induced microvascular pathology. Our data suggest RIPK as a potential therapeutic target to treat the neuropathology of COVID-19.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteasas 3C de Coronavirus/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microvasos/metabolismo , SARS-CoV-2/metabolismo , Animales , Barrera Hematoencefálica/patología , Encéfalo/patología , Chlorocebus aethiops , Proteasas 3C de Coronavirus/genética , Cricetinae , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microvasos/patología , SARS-CoV-2/genética , Células Vero
6.
Blood ; 138(25): 2702-2713, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1365304

RESUMEN

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Asunto(s)
Trampas Extracelulares/genética , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Insuficiencia Multiorgánica/genética , Proteínas de Unión a Fosfato/genética , Sepsis/genética , Inhibidores del Acetaldehído Deshidrogenasa/uso terapéutico , Traslado Adoptivo , Anciano , Animales , Células Cultivadas , Disulfiram/uso terapéutico , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Multiorgánica/patología , Insuficiencia Multiorgánica/terapia , Proteínas de Unión a Fosfato/antagonistas & inhibidores , Sepsis/patología , Sepsis/terapia
7.
Viruses ; 13(6)2021 06 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1282639

RESUMEN

Mammalian cells have developed an elaborate network of immunoproteins that serve to identify and combat viral pathogens. Interferon-stimulated gene 15 (ISG15) is a 15.2 kDa tandem ubiquitin-like protein (UBL) that is used by specific E1-E2-E3 ubiquitin cascade enzymes to interfere with the activity of viral proteins. Recent biochemical studies have demonstrated how the E3 ligase HECT and RCC1-containing protein 5 (HERC5) regulates ISG15 signaling in response to hepatitis C (HCV), influenza-A (IAV), human immunodeficiency virus (HIV), SARS-CoV-2 and other viral infections. Taken together, the potent antiviral activity displayed by HERC5 and ISG15 make them promising drug targets for the development of novel antiviral therapeutics that can augment the host antiviral response. In this review, we examine the emerging role of ISG15 in antiviral immunity with a particular focus on how HERC5 orchestrates the specific and timely ISGylation of viral proteins in response to infection.


Asunto(s)
Citocinas/genética , Interferones/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Ubiquitinas/genética , Virosis/inmunología , Animales , COVID-19/inmunología , Citocinas/inmunología , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ratones , SARS-CoV-2/inmunología , Ubiquitinas/inmunología , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Mol Med Rep ; 24(2)2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1271003

RESUMEN

Coronavirus disease 2019 (COVID­19), caused by the severe acute respiratory syndrome coronavirus­2 (SARS­CoV­2), led to an outbreak of viral pneumonia in December 2019. The present study aimed to investigate the host inflammatory response signature­caused by SARS­CoV­2 in human corneal epithelial cells (HCECs). The expression level of angiotensin­converting enzyme 2 (ACE2) in the human cornea was determined via immunofluorescence. In vitro experiments were performed in HCECs stimulated with the SARS­CoV­2 spike protein. Moreover, the expression levels of ACE2, IL­8, TNF­α, IL­6, gasdermin D (GSDMD) and IL­1ß in HCECs were detected using reverse transcription­quantitative PCR and/or western blotting. It was identified that ACE2 was expressed in normal human corneal epithelium and HCECs cultured in vitro. Furthermore, the expression levels of IL­8, TNF­α and IL­6 in HCECs were decreased following SARS­CoV­2 spike protein stimulation, while the expression levels of GSDMD and IL­1ß were increased. In conclusion, the present results demonstrated that the SARS­CoV­2 spike protein suppressed the host inflammatory response and induced pyroptosis in HCECs. Therefore, blocking the ACE2 receptor in HCECs may reduce the infection rate of COVID­19.


Asunto(s)
Epitelio Corneal/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Células Cultivadas , Córnea/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Epitelio Corneal/virología , Femenino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Persona de Mediana Edad , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Piroptosis , Glicoproteína de la Espiga del Coronavirus/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
10.
Kidney Blood Press Res ; 46(1): 74-83, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-978847

RESUMEN

INTRODUCTION: Various viruses including a novel coronavirus (SARS-CoV-2) can infect the kidney. When viruses invade the glomeruli from the bloodstream, glomerular endothelial cells (GECs) initiate the innate immune reactions. We investigated the expression of interferon (IFN)-induced protein with tetratricopeptide repeats (IFIT) 1/2/3, antiviral molecules, in human GECs treated with a toll-like receptor (TLR) 3 agonist. Role of IFIT1/2/3 in the expression of C-X-C motif chemokine ligand 10 (CXCL10) was also examined. METHODS: Human GECs were cultured and stimulated with polyinosinic-polycytidylic acid (poly IC), a synthetic TLR3 agonist. Real-time qPCR, Western blotting, and ELISA were used to examine the expression of IFIT1/2/3, IFN-ß, and CXCL10. RNA interference against IFN-ß or IFIT1/2/3 was also performed. RESULTS: Expression of IFIT1/2/3 and CXCL10 was induced by poly IC in GECs. The inductions were inhibited by RNA interfering of IFN-ß. Knockdown of IFIT1/2/3 decreased the CXCL10 expression. Knockdown of IFIT3 decreased the expression of IFIT1 and IFIT2 proteins. CONCLUSION: IFIT1/2/3 and CXCL10 were induced by poly IC via IFN-ß in GECs. IFIT1/2/3 may increase the expression of CXCL10 which induces lymphocyte chemotaxis and may inhibit the replication of infected viruses. These molecules may play a role in GEC innate immune reactions in response to viruses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Reguladoras de la Apoptosis/biosíntesis , Quimiocina CXCL10/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Glomérulos Renales/metabolismo , Proteínas de Unión al ARN/biosíntesis , Receptor Toll-Like 3/agonistas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Células Cultivadas , Quimiocina CXCL10/genética , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Glomérulos Renales/citología , Glomérulos Renales/efectos de los fármacos , Poli I-C/farmacología , Proteínas de Unión al ARN/genética , Receptor Toll-Like 3/metabolismo
11.
J Biol Chem ; 295(41): 14040-14052, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: covidwho-704089

RESUMEN

Coronaviruses have caused several zoonotic infections in the past two decades, leading to significant morbidity and mortality globally. Balanced regulation of cell death and inflammatory immune responses is essential to promote protection against coronavirus infection; however, the underlying mechanisms that control these processes remain to be resolved. Here we demonstrate that infection with the murine coronavirus mouse hepatitis virus (MHV) activated the NLRP3 inflammasome and inflammatory cell death in the form of PANoptosis. Deleting NLRP3 inflammasome components or the downstream cell death executioner gasdermin D (GSDMD) led to an initial reduction in cell death followed by a robust increase in the incidence of caspase-8- and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated inflammatory cell deathafter coronavirus infection. Additionally, loss of GSDMD promoted robust NLRP3 inflammasome activation. Moreover, the amounts of some cytokines released during coronavirus infection were significantly altered in the absence of GSDMD. Altogether, our findings show that inflammatory cell death, PANoptosis, is induced by coronavirus infection and that impaired NLRP3 inflammasome function or pyroptosis can lead to negative consequences for the host. These findings may have important implications for studies of coronavirus-induced disease.


Asunto(s)
Caspasa 8/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Células Cultivadas , Coronavirus/fisiología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/veterinaria , Citocinas/metabolismo , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Necroptosis , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo
12.
J Lipid Res ; 61(7): 972-982, 2020 07.
Artículo en Inglés | MEDLINE | ID: covidwho-382050

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.


Asunto(s)
Anticolesterolemiantes/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Pandemias , Neumonía Viral/tratamiento farmacológico , Androstenos/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , COVID-19 , Colesterol/metabolismo , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Reposicionamiento de Medicamentos/métodos , Humanos , Hidroxicloroquina/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/virología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Unión Proteica , Receptores Virales/antagonistas & inhibidores , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA